
Predictive Representations for Policy Gradient in POMDPs

Abdeslam Boularias boularias@damas.ift.ulaval.ca
Brahim Chaib-draa chaib@damas.ift.ulaval.ca

Department of Computer Science and Software Engineering, Laval University, Quebec, Canada, G1K 7P4

Abstract

We consider the problem of estimating
the policy gradient in Partially Observable
Markov Decision Processes (POMDPs) with
a special class of policies that are based
on Predictive State Representations (PSRs).
We compare PSR policies to Finite-State
Controllers (FSCs), which are considered as a
standard model for policy gradient methods
in POMDPs. We present a general Actor-
Critic algorithm for learning both FSCs and
PSR policies. The critic part computes a
value function that has as variables the para-
meters of the policy. These latter parameters
are gradually updated to maximize the value
function. We show that the value function
is polynomial for both FSCs and PSR poli-
cies, with a potentially smaller degree in the
case of PSR policies. Therefore, the value
function of a PSR policy can have less local
optima than the equivalent FSC, and conse-
quently, the gradient algorithm is more likely
to converge to a global optimal solution.

1. INTRODUCTION

Learning an optimal policy in a partially observable
environment is still considered as one of the most
difficult challenges in Reinforcement Learning (RL).
To achieve this, one must consider two main issues:
(1) mapping histories of interaction with the environ-
ment into an internal state representation, (2) find-
ing the optimal decisions associated to each internal
state. Partially Observable Markov Decision Processes
(POMDPs) provide a rich mathematical framework for
studying such problems. In POMDPs, the environ-
ment is represented by a finite set of states, and the
effects of actions on the environment are represented
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by probabilistic transition functions. After every exe-
cuted action, the agent perceives a numerical reward
and a partial, possibly noisy, observation.

Instead of keeping track of ever growing histories,
Finite-States Controllers (FSCs) provide an efficient
graphical model for mapping histories into equivalence
classes called internal-states (I-states). Most of policy
gradient methods for POMDPs are based on this fam-
ily of policies (Meuleau et al., 1999; Baxter & Bartlett,
2000; Shelton, 2001). FSC is like a probabilistic au-
tomaton where the observations are the inputs and the
actions are the outputs, with stochastic transitions be-
tween the I-states. The main drawback of FSCs is that
I-states do not directly affect the state of the environ-
ment. In fact, only the sequence of executed actions
determines the returned outcome, and the same se-
quence of actions may be generated by different se-
quences of I-states. Thus, considering the sequence of
I-states within the learning data slows down the con-
vergence of RL algorithms (Aberdeen & Baxter, 2002).

The principal contribution of this paper is a new policy
gradient method for finite-horizon POMDPs based on
a Predictive State Representation (PSR) policy. Ab-
erdeen et al. (2007) have already proposed to use PSRs
for reinforcement learning in partially observable do-
mains. However, they used PSRs for learning the
dynamics of the environment, and mapped the belief
states into a distribution over actions through a lin-
ear approximator. In our approach, we use PSRs to
represent policies directly without learning a model of
the environment. The parameters of PSR policies are
updated according to the gradient of a value function.
Our second contribution is a comparison of PSR poli-
cies to FSCs. For this purpose, we use the same basic
method for learning both FSCs and PSR policies, and
show that the value function of a PSR policy is poten-
tially less complex than the value function of FSC pol-
icy. This result is due to the fact that the parameters
of a PSR policy are based only on observable data. Fi-
nally, we empirically demonstrate the effectiveness of
PSR policies through several standard benchmarks.
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2. Background

We review the POMDP, PSR and FSC models, and
show how PSRs can be adapted to represent policies.

2.1. POMDPs

Formally, a POMDP is defined by the following com-
ponents: a finite set of hidden states S; a finite set of
actions A; a finite set of observations O; a set of transi-
tion functions {T a}, where T a(s, s′) is the probability
that the agent will end up in state s′ after taking ac-
tion a in state s; a set of observation functions {Oa,o},
where Oa,o(s) gives the probability that the agent re-
ceives observation o after taking action a and getting
to state s′; and a reward function r, such that r(s, a)
is the immediate reward received when the agent exe-
cutes action a in state s. Additionally, there can be a
discount factor, γ ∈ [0, 1], which is used to weigh less
rewards received further into the future. The horizon
H indicates the maximum number of actions that an
agent can execute while performing the given task.

Instead of memorizing a complete history of actions
and observations ht = a1o1 . . . atot, a probability dis-
tribution over the hidden states, called the belief state,
is sufficient to make predictions about the future ob-
servations and rewards. The belief state is a vector
bt, where bt(s) = Pr(st = s|ht), s ∈ S. The expected
reward of an action a given a history ht is given by:

R(a|ht) =
∑
s∈S

bt(s)r(s, a) (1)

2.2. PSRs

PSRs (Littman et al., 2002) are an alternative model
to represent partially observable environments without
using hidden states. The fundamental idea of PSRs is
to replace the probabilities on states by probabilities
on particular future trajectories, called core tests, or
by weights of particular past trajectories, called core
histories.

A test q is an ordered sequence of (action, observation)
couples, i.e. q = a1o1 . . . akok. The probability of a
test q starting after a history ht is defined by:

Pr(qo|ht, q
a)

def
= Pr(ot+1 = o1, . . . , ot+k = ok|ht,

at+1 = a1, . . . , at+k = ak) (2)

where qa denotes the actions of q and qo denotes its
observations.
The probability of any test q after a history ht depends
linearly on the probabilities of the same test after the
different core histories. We use H to indicate the set

of core histories. The PSR belief state1 is a vector bt,
where bt(h) is the weight of the core history h ∈ H in
the current history ht. The probability of any test q
after a history ht is given by:

Pr(qo|ht, q
a) =

∑
h∈H

bt(h)Pr(qo|h, qa) = bT
t mq (3)

where mq(h)
def
= Pr(qo|h, qa) is independent of ht, and

bt(h) is independent of q. The belief state bt ∈ R|H| is
a vector of real-valued weights and not probabilities.

After executing an action a and receiving an observa-
tion o, the PSR belief is updated by Bayes’ Rule:

Pr(qo|ht, a, o, qa) =
Pr(oqo|ht, a, qa)

Pr(o|ht, a)

=
∑

h∈H bt(h)Pr(oqo|h, a, qa)∑
h∈H bt(h)Pr(o|h, a)

=
∑

h∈H bt(h)Pr(o|h, a)Pr(qo|h, a, o, qa)∑
h∈H bt(h)Pr(o|h, a)

=
∑

h∈H bt(h)mao(h)
∑

h′∈H bhao(h′)mq(h′)∑
h∈H bt(h)mao(h)

=
∑
h∈H

bt+1(h)mq(h) = bT
t+1m

q (4)

where

bt+1(h) =
∑

h′∈H bt(h′)bh′ao(h)mao(h′)∑
h′∈H bt(h′)mao(h′)

(5)

The parameters of a PSR based on core histories are:
A, O, the set of core histories H, and the vectors mao

and bhao, ∀a ∈ A, o ∈ O, h ∈ H. The vector bhao

denotes the belief state at the history hao. Notice that
the vectors mao define a probability distribution over
the observations o for each action a and core history h,
thus, they can be represented by a softmax function.
This latter property is not satisfied in PSRs based on
core tests, and it lays behind our choice of using core
histories in this paper. However, most of the results
that we will present also apply to PSRs with core tests.

2.3. FSCs

The goal of a rational agent is to find an action that
maximizes its expected long-term reward after a given
history. The function that selects an action a given a
history ht is called policy. A parametric stochastic pol-
icy π is a function defined by π(a, ht, θ) = Pr(at+1 =
a|ht, θ), where θ is a vector of real-valued parameters
θ = (θ1, θ2, . . . , θn). Finite-State Controllers are an

1The same notation is used for different types of belief
state; the interpretation depends on the model.
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efficient graphical model used to represent stochastic
policies without memorizing all the histories (Meuleau
et al., 1999). An FSC is defined by: a finite set of in-
ternal states G; a set of action-selection functions µo,a,
where µo,a(g, θ) is the probability that the agent will
execute action a if its I-state is g, its last observation
was o, and the parameters of the policy are θ; a set of
transition functions ωo, where ωo(g, g′, θ) is the prob-
ability that the agent will select the I-state g if the
current I-state is g and the perceived observation is o.

Contrary to the states of a POMDP, the I-states of
an FSC are completely observable, thus, a history ht

should be a sequence of actions, observations and sam-
pled I-states. However, the cumulated reward of a
given history depends only on the executed actions
and the perceived observations. Moreover, the same
sequence of actions and observations can be used to
update the parameters (µ and ω) of all the I-states
that may have generated that sequence, with differ-
ent likelihoods. Shelton (2001), Aberdeen and Bax-
ter (2002) proposed a Rao-Blackwellized version of
FSCs where internal-belief states are calculated at
each step instead of sampling a single I-state. Rao-
Blackwellization technique is known to reduce the vari-
ance of Monte-Carlo estimators (Casella & Robert,
1996). The internal belief state is a vector bt(., θ),
where bt(g, θ) = Pr(gt = g|ht, θ), g ∈ G. The initial
internal belief state b0 is given in the parameters θ.
At each step, the internal belief state is updated by
Bayes’ Rule as in POMDPs, and used to sample an
action to be executed.

2.4. PSR Policies

PSRs can be used to represent policies instead of the
environment dynamics by switching the roles of actions
and observations (Wiewiora, 2005). In fact, a test q
can be redefined as an ordered sequence of (observa-
tion, action) couples, i.e. q = o1a1 . . . okak. Given
the vector θ of policy parameters, the probability of q
starting after ht is redefined as:

Pr(qa|ht, q
o, θ)

def
= Pr(at+1 = a1, . . . , at+k = ak|ht,

ot+1 = o1, . . . , ot+k = ok, θ) (6)

As for the environment dynamics, the probability
Pr(qa|ht, q

o, θ) of any test q starting after a history
ht is given by a linear combination of the probabilities
of the same test q starting after different core histo-
ries h ∈ H. The internal belief state bt corresponds to
the weights of these core histories in Pr(qa|ht, q

o, θ).
In particular, the probability of executing action a at

time t after observing o is given by:

Pr(a|ht, o) =
∑
h∈H

bt(h, θ)Pr(a|h, o, θ) = bT
t moa (7)

The core histories of a policy are independent from the
core histories of the controlled environment. We will
use H only to indicate the policy core histories, since
no model of the environment is used in our approach.

After receiving an observation o and executing an ac-
tion a, the internal belief state bt(., θ) is updated by:

bt+1(h, θ) =
∑

h′∈H bt(h′, θ)bh′oa(h, θ)moa(h′, θ)∑
h′∈H bt(h′, θ)moa(h′, θ)

(8)

A PSR policy is defined by: the set of core histories H,
and the vectors moa and bhoa, ∀o ∈ O, a ∈ A, h ∈ H.
The initial history h0 = ε is always a core history, thus
b0(ε, θ) = 1 and ∀h ∈ H − {ε} : b0(h, θ) = 0.

3. Reinforcement Learning in POMDPs

There are two major families of reinforcement learning
algorithms that can be used to find the optimal para-
meters of a policy. In the first family, a value function
is used to estimate the expected long-term reward of
each action in every state of the environment (which is
a history ht in our case). The parameters of the policy
are adjusted so that in each state, the actions with the
highest estimated long-term reward will be executed
more frequently. In the second family, the optimal
policy is gradually learned by searching in the space of
parameters. The parameters are updated according to
the immediate reward after executing each action, or
according to the cumulated reward at the end of each
trial. Most Policy Gradient algorithms for POMDPs,
such as GAPS (Peshkin, 2001) or GPOMDP (Baxter
& Bartlett, 2000) belong to this family.

Actor-critic algorithms (Sutton et al., 2000; Peters
& Schaal, 2006; Aberdeen et al., 2007) combine the
advantages of both value-function and policy search
methods. The actor part maintains a parametric pol-
icy that is gradually improved according to the evalu-
ation provided by the critic part. The critic learns a
value function where the variables correspond to the
parameters of the policy. In the following section,
we describe a general method where the critic part
learns unbiased estimates of immediate rewards which
are used to calculate the gradient of the value func-
tion with respect to the policy parameters. We show
how history-action Q-values are eliminated from the
expression of the gradient and replaced by immediate
rewards. Finally, we present the gradient expression
for both cases where the policy is represented by an
FSC and where the policy is represented by a PSR.
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4. A General Actor-Critic Approach

The actor is a stochastic policy with a vector of pa-
rameters θ, the critic is a function that returns the
gradient of the value function V (h0, θ), which is the
total, expected, discounted reward when executing a
policy parameterized by θ after a starting history h0.

V (h0, θ) =
∑
a∈A

Pr(a|h0, θ)Q(h0, a, θ)

where the history-action Q-values are given by:

Q(ht, a, θ) = R(a|ht)

+γ
∑
o∈O

∑
a′∈A

Pr(oa′|hta, θ)Q(htao, a′, θ) (9)

4.1. Gradient Expression

The following derivation is an adaptation to POMDPs
of the proof of the policy gradient theorem for MDPs,
proposed by Sutton et al. (2000). We indicate by ha

t

the actions of a history ht and by ho
t its observations.

∂V (h0, θ)
∂θi

=
∂

∂θi

∑
a∈A

Pr(a|h0, θ)Q(h0, a, θ)

=
∑
a∈A

∂Pr(a|h0, θ)
∂θi

Q(h0, a, θ) + Pr(a|h0, θ)
∂Q(h0, a, θ)

∂θi

Substituting Q(h0, a, θ) with Equation (9), and repeat-
ing the substitution for H steps yields to:

∂V (h0, θ)
∂θi

=
H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

[γtPr(ht|θ)Q(ht, a, θ)

∂Pr(a|ht, θ)
∂θi

] (10)

Applying Bayes’ Rule Pr(a|ht, θ) = Pr(ha
t a|ho

t ,θ)
Pr(ha

t |ho
t ,θ) gives:

∂Pr(a|ht, θ)
∂θi

=
1

Pr(ha
t |ho

t , θ)
∂Pr(ha

t a|ho
t , θ)

∂θi

−∂Pr(ha
t |ho

t , θ)
∂θi

Pr(a|ht, θ)
Pr(ha

t |ho
t , θ)

(11)

After replacing this latter formula within Equation
(10), and adequately reordering the terms (details are
removed due to the lack of space), we find:

∂V (h0, θ)
∂θi

=

H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γt ∂Pr(ha
t a|ho

t , θ)
∂θi

Pr(hta|θ)
Pr(ha

t a|ho
t , θ)

[Q(ht, a, θ)− γ
∑
o∈O

∑
a′∈A

Pr(oa′|hta)Q(htao, a′, θ)︸ ︷︷ ︸
R(a|ht)

]

Thus:

∂V (h0, θ)
∂θi

=
H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γt ∂Pr(ha
t a|ho

t , θ)
∂θi

Pr(ho
t |ha

t )R(a|ht) (12)

Notice that the term Pr(ho
t |ha

t )R(a|ht) is independent
of θ. It can be learned by a simple Monte Carlo method
with Importance Sampling, using a look-up table:

P̂ r(ho
t |ha

t ) = 1
Pr(ha

t |ho
t ,θ)

#ht

N

R̂(a|ht) = 1
N

∑N
i=1 ri,tδht,hi,t

δa,ai,t+1

where N is the number of trials, ai,t and ri,t are re-
spectively the action and the reward observed at time
t in trial i, hi,t is the history at time t in trial i.

Now, we will show how to calculate the other term,
∂Pr(ha

t a|ho
t ,θ)

∂θi
, depending on the model of the policy.

4.2. Gradient Estimation for FSCs

If we use an FSC to represent the policy, then:

Pr(ha
t |ho

t , θ) = bT
0 (., θ)Mo1a1

θ . . .Motat

θ e (13)

where {
M

ojaj

θ (g, g′) = ωoj (g, g′, θ)µoj ,aj (g′, θ)
eT = (1, 1, . . . , 1)

Thus:

∂Pr(ha
t |ho

t , θ)
∂θi

=
t∑

j=1

∑
g∈G

∑
g′∈G

[αj−1(g, θ)βt
j+1(g

′, θ)

∂(ωoj (g, g′, θ)µoj ,aj (g′, θ))
∂θi

] +
∑
g∈G

βt
0(g, θ)

∂b0(g, θ)
∂θi

where
α0(g, θ) = b0(h, θ)
αi(g, θ) = bT

0 (., θ)Mo1a1
θ . . . Moiai

θ (., g)
βt

i (g, θ) = Moiai
θ (g, .)M

oi+1ai+1
θ . . . Motat

θ e
βt

t+1(g, θ) = 1

This latter expression of the gradient corresponds to
the same expression proposed in (Shelton, 2001).

4.3. Gradient Estimation for PSR Policies

If we use a PSR to represent the policy, then:

Pr(ha
t |ho

t , θ) = bT
0 (., θ)Mo1a1

θ . . .Motat

θ e (14)

where {
M

ojaj

θ (h, h′) = mojaj (h, θ)bhojaj (h
′, θ)

eT = (1, 1, . . . , 1)
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Therefore:

∂Pr(ha
t |ho

t , θ)
∂θi

=
t∑

j=1

∑
h∈H

∑
h′∈H

[αj−1(h, θ)βt
j+1(h

′, θ)

∂(mojaj (h, θ)bhojaj
(h′, θ))

∂θi
]

where
α0(h, θ) = b0(h, θ)
αi(h, θ) = bT

0 (., θ)Mo1a1
θ . . . Moiai

θ (., h)
βt

i (h, θ) = Moiai
θ (h, .)M

oi+1ai+1
θ . . . Motat

θ e
βt

t+1(h, θ) = 1

4.4. Updating the Parameters of the Policy

The gradient calculated by the critic (Equation 12) is
used to update the parameters θi:

θi ← θi + η
∂V (h0, θ)

∂θi
(15)

where η ∈ [0, 1] is the gradient step size.

Policy gradient methods are proved to converge to a
local optimum. The probability of reaching a global
optimum depends on the complexity (or the shape) of
the value function. In the following section, we show
that the value function is a polynomial, with a smaller
degree when the policy is represented by a PSR.

5. Complexity of The Value Function

The functions ωo and µo,a return distributions of prob-
abilities, they are usually represented as softmax func-
tions. The analysis of the value function is more dif-
ficult with this representation, since it involves expo-
nentials and fractions. For the purpose of comparing
to PSRs, and without loss of generality, we consider
each ωo(g, g′) and each µo,a(g) as a different parame-
ter, so ωo(g, g′, θ) = θg,o,g′ and µo,a(g, θ) = θo,g,a, we
also consider b0(g, θ) = θg. For PSRs, the vectors bhoa

are not stochastic, therefore each bhoa(h′) is a different
parameter, so bhoa(h′, θ) = θhoa,h′ . Similarly, we put
moa(h, θ) = θoa,h.

Notice now that the function returning Pr(ha
t |ho

t , θ)
(Equations 13 and 14) is a multivariate polyno-
mial of degree less than or equal to 2t + 1. The
variables of this polynomial correspond to the pa-
rameters θhoiai,h′ , θojaj ,h for PSR policy, and to
θg,oj ,g′ , θoj ,g,aj , θg for FSC.

Unless the structure of the FSC is provided a priori,
the graph of the FSC is generally completely con-
nected, i.e. ∀a, o, g, g′ : ωo(g, g′, θ)µo,a(g′, θ) > 0.

Thus, we have αj(g, θ) > 0 and βt
j(g

′, θ) > 0 for every
I-state g and step i ≤ t, the degree of the polynomial
Pr(ha

t |ho
t , θ) for the FSC is then equal to 2t + 1.

To reduce the degree of the value function, Aberdeen
and Baxter (2002) proposed reducing the outdegree of
the FSC graph and augmenting the number of I-states.
However, the convergence can be delayed in that case,
given that more parameters should be learned.

The main advantage of PSRs comes from the fact
that, contrary to I-states, the core histories are con-
tained within the sequence of actions and observations,
and no transition probabilities are used to calculate
the probability of a core history sequence. Namely,
when a prefix sequence o1a1 . . . oiai of the history
ht = o1a1 . . . oiai . . . otat corresponds to a core his-
tory hi, then the term bT

0 (., θ)Mo1a1
θ . . .Moiai

θ in Equa-
tion (14), can be replaced by a vector αi(., θ) where
αi(hi, θ) = Pr(ha

i |ho
i , θ) and αi(h, θ) = 0 for h 6= hi

(αi is the “unnormalized” belief at time i). We have:

Pr(ha
i |ho

i , θ) = Pr(a1|h0, o1, θ) . . . P r(ai|hi−1, oi, θ)

From the construction of PSRs (Littman et al., 2002),
we know that all the prefixes of a core history are also
core histories, therefore:

Pr(ha
i |ho

i , θ) = θo1a1,h0θo2a2,h1 . . . θoiai,hi−1

This latter term is a polynomial of degree i. Hence, the
degree of the polynomial Pr(ha

t |ho
t , θ) (Equation 14) is

at most equal to 2t− i.

Consequently, the degree of the value function polyno-
mial is generally smaller when the policy is represented
by a PSR than when it is represented by an FSC, and
the number of local optima is also smaller, as we will
see in the following example.

5.1. Example

Figure 1 shows a simple toy problem with 3 deter-
ministic actions: U (Up), L (Left) and R (Right), and
two deterministic observations o1 (lower states) and
o2 (upper states) (Figure 1.a). There are also two fi-
nal states marked with positive rewards. Figure 1.b
presents a parametric FSC with three states, g1 is the
initial state, g2 and g3 are final states. We focus on
only two parameters, since representing functions with
more than 2 variables graphically is not feasible. The
first parameter θ1 corresponds to the probability of go-
ing from state g1 to state g2 after observing o2, 1− θ1

is the probability of going to g3. The second para-
meter θ2 corresponds to the probability of executing
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1
2

1

start O1

O2
(a)

h0 = ε, H = {ε}, bεO1U (ε) = 1, mO2L(ε) = Pr(L|O2, ε)
def
= θ1

′

mO2R(ε) = Pr(R|O2, ε)
def
= θ2

′, mO2U (ε) = Pr(U |O2, ε)
def
= θ3

′

g2 g3

g1

Pr(g2|g1, o2) = θ1 Pr(g3|g1, o2) = 1 − θ1

Pr(U|o1) = 1

Pr(U|o2) = 1 − θ2

Pr(L|o2) = θ2

Pr(R|o2) = 1 − θ2

Pr(U|o2) = θ2

1 1(b)

(c)

(d)
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Figure 1. The value functions of an FSC (polynomial of
degree 2) and its equivalent PSR (polynomial of degree 1).

action L in state g2 after observing o2, and 1 − θ2

is the probability of executing action R in g3. The
value function of this FSC for horizon 2 is given by
V FSC(h0, θ) = 1

2θ1θ2 + (1 − θ1)(1 − θ2), it has one
global maximum of value 1 and one local maximum of
value 1

2 (Figure 1.d). The equivalent PSR policy (Fig-
ure 1.c) can be represented by one core history: ε, and
three parameters: θ1

′ = mO2L(ε) and θ2
′ = mO2R(ε)

and θ3
′ = mO2U (ε). The value function of this pol-

icy is given by V PSR(h0, θ
′) = 1

2θ1
′ + θ2

′, it has only
a global maximum (Figure 1.d) within the simplex of
valid parameters, i.e. θ′1 + θ′2 ≤ 1. This gain is due to
the fact that the history h1 = O1U is equivalent to ε
(all the histories are equivalent to ε when H = {ε}),
thus bh1(ε) = 1 (degree 0) and the probability of action
L after h1 and O2, for example, is Pr(L|h1, O2) = θ1

′

(degree 1). While for the FSC, we have bh1(g2) = θ1,
bh1(g3) = 1− θ1 and Pr(L|h1, O2) = θ1θ2 (degree 2).

6. Constraining PSR Belief States

The belief state of a PSR is not a probability distrib-
ution, it is rather subject to a set of constraints that
should be satisfied at any time t:

C1
t : ∀o ∈ O,∀a ∈ A :

∑
h∈H bt(h, θ)moa(h, θ) ≥ 0;

C2
t : ∀o ∈ O :

∑
a∈A

∑
h∈H bt(h, θ)moa(h, θ) = 1;

The number of reachable belief states bt is exponential
w.r.t. the horizon H, while only the vectors moa and
bhoa appear in the parameters of the policy. Thus, we
should define another set of constraints on moa and
bhoa to ensure that {C1

t , C2
t } will be satisfied after an

arbitrary number of bayesian updates. The existence
of such constraints depends on the convexity of the
bayesian update function inside the convex hull of valid
belief states, and up to our knowledge, this problem
has not been studied before in the context of PSRs.

Nevertheless, we will define a set of weaker constraints
on moa and bhoa that can keep the beliefs bt within the
hull of valid weights for short horizons:

C1
0 : ∀o ∈ O,∀a ∈ A,∀h ∈ H : moa(h, θ) ≥ 0;

C2
0 : ∀o ∈ O,∀h ∈ H :

∑
a∈A moa(h, θ) = 1;

C3
0 : ∀o ∈ O,∀a ∈ A,∀h ∈ H :

∑
h′∈H bhoa(h′, θ) = 1;

Constraints C1
0 and C2

0 can be satisfied by using a
Boltzmann distribution for each core history h and
each observation o. Constraint C3

0 is justified by the
fact that: ∀t ∈ {0, . . . ,H} :

∑
h∈H bt(h, θ) = 1. In-

deed, for any observation o, we have:∑
h∈H bt(h, θ) =

∑
h∈H bt(h, θ)

∑
a∈A moa(h, θ)

=
∑

a∈A
∑

h∈H bt(h, θ)moa(h, θ)
=

∑
a∈A Pr(a|ht, o, θ) = 1

To satisfy C3
0 , we project the gradient ∂V (h0,θ)

∂θhoa,h′
onto

the hyperplane defined by C3,0 by solving a system of
linear equations, the projected values are given by:

∂V (h0, θ)
∂θhoa,h′

← ∂V (h0, θ)
2∂θhoa,h′

− 1
2|H|

∑
h′′∈H

∂V (h0, θ)
∂θhoa,h′′

(16)

7. Discovery of Core Histories

Initially, the set H contains only the empty history
ε, the vectors moa are initialized to uniform distrib-
utions over actions a for each observation o, and all
the histories are considered as equivalent to ε, i.e.
θεoa,ε

def
= bεoa(ε, θ) = 1 (because of the constraint C3

0 ).
As the parameters θ are updated, new core histories
are iteratively discovered and added to H. A history
hoa (which is an extension of a core history h ∈ H) is
considered as a core history, if there is at least a test q
such that Pr(qa|hoa, qo) cannot be written as a linear
combination of the probabilities Pr(qa|h′, qo), h′ ∈ H.
Since this criteria cannot be verified for every possible
test q, we will rather use a set of heuristic measures
as an indicator of the predictability of the history hoa.
The first one is based on the distance dhoa between
the vector θhoa, which is updated by using the gra-
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Figure 2. 4x4 maze results.
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Figure 3. Network results.

dient calculated in Equation (12), and the corrected
vector θ′hoa, which is updated by using the projected
gradient of Equation (16) (i.e. dhoa is the correction
made on θhoa to make it satisfy the constraint C3

0 ),
d2

hoa =
∑

h′∈H(θhoa,h′ − θ′hoa,h′)
2

The second measure is the entropy eho of the distrib-
ution over actions a conditioned on h and o,

eho = −
∑

a∈A Pr(a|h, o) ln Pr(a|h, o)
Finally, a history hoa cannot be added to H if it has
not been tested enough. Thus, our third measure is
P̂ r(hoa|ε) = #hoa

N , where N is the number of trials.

A history hoa is considered as a new core history iff:
(dhoa ≥ εd) ∧ (eho ≥ εe) ∧ (P̂ r(hoa|ε) ≥ εp)

where εd,εe and εp are predefined thresholds. The
probabilities moa(h′, θ) of a new core history h′ are
initialized to a uniform distribution, whereas all the
extensions of h′ are considered as equivalent to h′, i.e.
bh′o′a′(h′, θ) = 1 and bh′o′a′(h′′, θ) = 0 for h′′ 6= h′.

8. Experiments

We test the policy gradient approach described in Sec-
tion 4 on small standard problems taken from A. R.
Cassandra’s POMDP data repertoire (on the web), us-
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Figure 4. Cheese maze results.
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Figure 5. Shuttle results.

ing PSRs and FSCs as models of the policies. We use
softmax functions to represent the distributions over
actions in both PSRs (with the vectors moa) and FSCs
(with the functions µoj ,aj ), and to represent the distri-
butions over the next I-states in FSCs (with the func-
tions ωoj ). We use the same temperature τ for these
functions, τ is initialized to 0.1 for 4 × 4 maze prob-
lem, to 1 for Cheese maze and Shuttle problems, and
to 10 for Network problem. For all these problems, τ
is decreasing by a constant factor of 0.999.

The number of I-states |G| is the only hyper-parameter
for FSCs, it is chosen by a cross-validation for each
problem. We found that the best value of |G| is 6
for 4 × 4 maze, 3 for Cheese maze and Shuttle prob-
lems, and 8 for Network problem. The parameters
of the transition functions ωoj , used by the softmax
function, are randomly initialized to values between
0 and 1. The parameters of the action-selection func-
tions µoj ,aj are initialized to 0 (a uniform distribution).
The functions µoj ,aj and ωoj cannot be all initialized
to uniform distributions, this results in uniform beliefs
and a zero gradient (Aberdeen & Baxter, 2002). The
hyper-parameters of PSR policies are the thresholds
εp,εe, and εd (see Section 7). εp is set to 0.1 for all the
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problems, while εd is set to 0.1 for 4× 4 maze, to 6 for
Network, and to 0 for Cheese maze and Shuttle. εe is
set to 0 for 4 × 4 maze and Network, and to 1.5 for
Cheese maze and Shuttle. Notice that these thresholds
are used to control the size of H: using smaller thresh-
olds leads to more core histories and vice versa. They
are found by a cross-validation, as for |G| in FSCs.
Finally, we use the same constant gradient step η for
both PSRs and FSCs, η is set to 1 for 4×4 and Cheese
mazes (problems with small rewards), and to 0.1 for
Network and Shuttle (problems with high rewards).

Figures 2-5 show the average reward per step of FSC
and PSR, and the average number of discovered core
histories per step for PSR. The results are averaged
over 10 independent runs. For all these problems, the
Policy Gradient algorithm converged to locally opti-
mal values for both models of policies. However, we
notice that the final value is slightly higher when we
use a PSR to represent the policy, which is expected
from the theoretical analysis of Section 5. The outper-
formance of PSR policies is more pronounced in prob-
lems with a smaller number of histories (|A||O| = 8
in 4 × 4 maze and Network, 15 in Shuttle, and 28 in
Cheese maze). Indeed, discovering the accurate set of
core histories becomes more difficult when the branch-
ing factor |A||O| is higher. Finally, we notice that the
learning algorithm for PSRs converged rapidly in Net-
work problem, this is explained by the fact that all the
core histories were discovered within the first 30 trials.

9. Discussion

We have shown that PSRs are alternative to Finite-
State Controllers in policy gradient methods for
POMDPs. Internal states of PSR policies are based
on observable sequences of interacting with the envi-
ronment, called core histories. Two main advantages
result from this property. The first one is related to
finite-horizon problems, where the degree of the value
function polynomial is reduced by the length of the
longest core history observed in a given trial. The sec-
ond advantage is the possibility of discovering new core
histories, based on the predictability of the extensions
of previous core histories. We used different heuris-
tics, based on the entropy of the actions distribution
and the correction of the gradient, as an indicator of
the predictability, but more sophisticated techniques
should be investigated (Makino & Takagi, 2008).

However, it is unclear how PSR policies will perform
in infinite-horizon problems where the value function
is defined only on the stationary belief state and the
core histories cannot be observed. This problem can
be treated by using a mechanism for detecting reset

points. Particularly, one can combine core histories
and core tests, and use the first ones to detect the
reset points for the second. The other issue related
to infinite-horizons is the stability of the belief states.
We defined some constraints that can keep the belief
within the hull of valid parameters for short horizons,
but the general solution remains an open problem.
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